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Abstract. Based on time-dependent perturbation theory. we established a fundamental 
equality between Bardeen's tunnelling matrix element and Heisenberg's resonance energy. 
Applying thisequality to the hydrogen molecular ion, we derived asimple analyticexpression 
for thepotentialcurvesin the attractive-force regime, which is found to beaccurate to better 
than 1 x IO-'au throughout the entire regime. By extending it to the many-body case, we 
present a unified view ofscanning tunnelling microscopy (STM) and atomic force microscopy 
( ~ m ) .  The fundamental equality then has a measurable consequence: for metals, the 
observed attractive atomic force F and the observed tunnelling conductance C should 
conform lo the general equation F = -fKE(GRK)'@, where 1: is the inverse decay length of 
the surface wavefunction near the Fermi level, E is the width of the conduction band of the 
metal, R x  is von Klitzing's constant and f is a dimensionless factor of the order of unity, 
which dependson tipgeometry. Theequation is found to be in quantitative agreement with 
recent reSults of combined experiments of AFM and S1M. Conceptually. it means that the 
imaging process in STM is a sequence of bond forming and bond rupturing. From the 
computational point ofview, the equality between Bardeen's tunnelling matrixelement and 
Heisenberg's resonance energy may open a new first-principles method for calculating 
potential curves of molecules and the exchange coupling responsible for magnetism. 

1. Introduction 

Since the invention of scanning tunnelling microscopy [l] (STM) and atomic force micro- 
scopy [2] (AFM), for the first time in history, individual atoms on surfaces, individual 
electronic states of atomic dimensions as well as forces with atomic-scale resolution 
become directly perceptible. From the instrumentation point of view, STM and AFM are 
based on very similar concepts. The underlying processes, i.e. the tunnelling con- 
ductance and the interatomic force, have been considered as fundamentally unrelated. 
Nevertheless, recently, a series of interesting experimental and theoretical results [ 3 4 ]  
showed that the interatomic force and tunnelling conductance are closely related. These 
are now briefly outlined. 

1 . I .  Measured tip-sample distance 

Because of the observed exponential dependence of tunnelling conductance with 
distance, in the early years of STM experiments, only the relariue tipsample distances 
weremeasured. Theabsolute distancewasestimated[7] tobeabout 10 .& Theargument 
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was based on the observed exponential dependence of tunnelling conductance on 
distance, which seems to imply a WKB behaviour, with a tunnelling bamer roughly equal 
to the vacuum level. This could happen only when the barrier lowering due to image 
force is small, which implies a distance at least as large as 6 A. However, recent direct 
measurements of the tipsample distance have revealed a dramatic deviation from this 
early concept. With a combined AFM-STM experiment on metals, Diirig eta1 have shown 
[3] that. under normal experimental conditions in STM, the tip-sample distances are 1- 
4 8, before mechanical contact. With a tungsten tip, on a silicon surface, the normal t i p  
sample separation is measured to be about 3 a before mechanical contact [ 5 ] .  The 
distance of mechanical contact is defined as the distance where the net force between 
the tip and the sample is zero, that is. where the attractive force equals the repulsive 
force. Finally, in order to understand the very basic experimental fact of STM, the atomic 
resolution. such a short tipsample distance is a necessary condition [6] .  Hence, the 
range of tipsample distances under normal STM operation coincides with the range of 
strong attractive force between tip and sample [4,5]. 

1.2.  Exponential dependence of attractive force with distance 

The same experiments of Diirig et a1 revealed that, in the attractive-force regime, the 
observed atomic force obeys an exponential law with respect to tipsample separation 
[3] over a range of 3 A. The range of the exponential attractive force overlaps with that 
of normal STM operation 131. The exponential dependence indicates that the nature of 
the force cannot be van der Waals. Furthermore, the magnitude of the force is much 
larger than the theoretical value of the van der Waals force [S, 91. Diirig et a1 attribute 
the observed attractive force to metal adhesion, a macroscopic phenomenon based on 
the overlap of electron wavefunctions of the same and the tip. which has the right 
magnitude and the right exponential dependence [lo]. 

1.3. Effect offorce in STM experiments 

The force occurring during STM experiments may deform the tip as well as the sample, 
and thus affect the observed images. This was first proposed by Soler et al then verified 
and extended by many other authors [4]. Attractive force also plays a vital role in STM 
experiments, especially in the measurement of apparent barrier heights. The force may 
result in deformation of the sample as well as the tip 141. The actual displacement of the 
tip-sample separation may differ from the mcasuredr-piezo displacement. The apparent 
barrier height as measured through the z-piezo displacement can differ from the apparent 
barrier height by definition [ 5 ] .  

1 .4 .  Outlineof thispaper 

To summarize, experimental evidence shows that, in the range of normal operation of 
STM, attractive force always accompanies tunnelling [3-6]. Therefore, an understanding 
of the relation between atomic force and tunnelling conductance is important for the 
understanding of both STM and AFM. 

To date, most of the theoretical work on AFM attributed the force to van der Waals 
interactions [ 9 ] .  This is in accordance with the earlier estimation of the tipsample 
separation [7]. i.e. greater than 6 A. This distance, however, excludes the possibility of 
achieving atomic resolution 171, and contradicts the recent direct measurement of the 
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normal tipsample separation [3,5], 1-4 A before mechanical contact. We will show 
that, at normal tipsample distances, the wavefunctionsof the tip and the sample exhibit 
substantial overlap, and the resonance energy [ll] becomes much greater than the 
van der Waals energy, which means that the attractive force occurring in normal STM 
operation is predominantly due to resonance energy. 

The problem here is of a very fundamental nature. To elucidate it, using the time- 
dependent Schrodinger equation, we show that for two atomicsystems weakly coupled, 
Bardeen's tunnelling matrix element [12] and Heisenberg's resonance energy [13] are 
equal. By applying this fundamental equality to the problem of the hydrogen molecular 
ion [ll], we show that in the entire range of attractive force the coupling energy can be 
accurately represented as a sum of the van der Waals energy [8]  and the resonance 
energy [13,14]. By evaluating the resonance energy using Bardeen's expression for the 
tunnelling matrix element [12], an exceedingly accurate analytic expression for the 
potential curve of the hydrogen molecular ion is derived. 

By extending this fundamental relation to the many-body case, we show that the 
interatomic force in the attractive-force regime and the tunnelling conductance are 
intrinsically related. For metals, an explicit equation between two sets of measurable 
quantities is derived. These quantities can be directly and independently determined 
using STM and AFM. A comparison with recent experiments [3] shows good agreement. 
Conceptually, thenew theoryimplies that in the distancerangeofnormalsmoperations, 
the atom-resolved STM imaging process can be considered as a sequence or bond forming 
and bond rupturing. 

From the point of view of computational physics, the equality between Bardeen's 
tunnelling matrix element and Heisenberg's resonance energy may open a new first- 
principles method for calculating potential curves in molecules and exchange energies 
responsible for magnetism using perturbation method. The concept of resonance is the 
foundation of Pauling's theory of chemical bonds [14]. Actually, by expanding the 
wavefunction in terms of spherical harmonics, Bardeen's tunnelling matrix elements 
follow an extremely simple deriuatiue rule [6]. Because the resonance energy exactly 
equals Bardeen's integral, analytical expressions for the potential curves at larger dis- 
tances can be obtained. In many cases, the exchange constants occurring in magnetism 
are within the range of pure attractice interatomic force. Therefore, the analytic method 
of evaluating Bardeen's tunnelling matrix elements may open a new way of calculating 
or estimating these coupling constants. 

Because this paper is written for experimentalists as well as theorists, two unit systems 
are used in parallel. In discussing theoretical issues, atomic units (au) are used: energy 
in hartrees (=27.21 eV), length in bohrs (=OS29 A). In discussing experimentalissues, 
electron volts and ingstroms are used. The unit of force, nN, is related to these units 
through the following relations: 

1 eV/1 A = 1.60nN 

1 Hartreeh Bohr = 82.3 nN. 

2. Hydrogen molecular ion revisited 

In quantum mechanics as well as in field theory, solvable models are always precious. 
For example, the hydrogen molecular ion is one of the most important solvable problems 
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Figure1.Threeregimesoiinteractionofa hydro- 
gen atom with a proton. (a)  At large distances. 
R 5. 16a11,thesystemcan beconsideredasaneu- 
t ldl  hydrogen atom plus a proton. The polar- 
ization of the hydrogen atom due to the field of 
the proton generates a van der Waals force. (b)  
At intermediate distances, 16 au > R > 4 au. the 
electron can tunnel to the vicinity of another 
proton. and vice versa. A resonance force is gen- 
erated, which is either attractive or repulsive. ( c )  
At short distances. R < 4 au. proton-proton 
repulsion becomes important. 
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Figure 2. A comparison of the van der Waals 
energy and the resonanceenergyiorthe hydrogen 
molecular ion at relatively large distances, The 
van der Waals energy for a pair of neutral hydro- 
gen atoms is also shown. 

in quantum mechanics because 'a great many of the properties of molecules are illus- 
trated in this simple case'. as Slateropenshisfour-volume Quanfum TheoryofMolecules 
adSol ids  with a details treatment of it [ I l l .  

I n  this section, we present a new interpretation of the exact solution of the Hi 
problem in terms of tunnelling 1121. We will show that a great many of the properties of 
STM and AFM can be illustrated in this simple case. 

2.1. Three regimes of inreraction 

Figure 1 s h o w  three regimes of interaction in a hydrogen molcular ion. At large 
distances, the system can be considered as a neutral hydrogen atom plus a proton. The 
electrical field of the proton polarizes the hydrogen atom. As a result, a van der Waals 
force is induced [SI. The van der Waals force dominates as the proton-proton distance 
R > 8 A. At a distance R < 8 A, the 1s electron at the vicinity of the right proton has an 
appreciable probability to tunnel into the Isstate of the left proton, and vice versa. The 
tunnelling phenomenon gives rise to a resonance and results in a lowering of the total 
energy [13]. The concept of such resonance was suggested by Heisenberg [13] in 1926 
for treating many-body problems. It is also the foundation of Pauling's theory of the 
chemical bond [14]. The resonancegivesrise to a bondingstatewith a lower total energy 
(attractive force) and an antibonding state with a higher total energy (repulsive force). 
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At even shorter distances, e.g. R < 2.5 A, the repulsive force between the protons 
becomes important, and the net force becomes repulsive regardless of the type of state. 

In the following, we discuss the three regimes individually. 

2.2. Van der Waals force 

As shown in figure I(a), at large distances, the system can be considered as a neutral 
hydrogen atom plus an isolated proton. The field of the proton polarizes the hydrogen 
atom to induce a dipole. The interaction between the proton and the induced dipole 
generates a van der Waals force. The van der Waals force can be treated as a classical 
phenomenon [8] by introducing a pheonomenological polarizability LY: 

p = LYE (2.1) 
wherep is the induced dipole of the neutral hydrogen atom, and E is the electrical field 
of another proton. The coupling energy E between the proton and the neutral hydrogen 
atom is [8] 

E = - ( L Y / ~ ) R ?  (2.2) 
The polarizability of the hydrogen atom can be calculated accurately using quantum 

mechanics. To a high degree of accuracy, the effect can be described as follows. A p a  
component is induced by the external electric field, which in tum generates a shift of the 
centre of negative charge from the position of the proton [15]. Thisp, component is of 
the same nature as the tip-induced local states (TILS) in the theory of STM introduced by 
Ciraci et a[ [16]. The accurate evaluation of the polarizability is one of the earliest 
applications of quantum mechanics. Using parabolic coordinates [17], it was shown that 
CY = 9/2. Therefore, 

E = - % R - 4 ,  (2.3) 
For the situation in STM and AFM, the above treatment, i.e. the van der Waals force 

between a neutral hydrogen atom and a proton, represents a gross overestimation. 
Actually, in STM and AFM experiments of conducting materials, the features near the gap 
are nearly neutral, which is similar to the situation of a pair of neutral hydrogen atoms 
rather than a proton with a neutral hydrogen atom. The van der Waalsforce between a 
pair of neutral hydrogen atoms is also a well studied problem. The accurate result is [8] 

E = -6.50R-6. (2.4) 
For values of R of interest, the van der Waals force between neutral atoms is about one 
order of magnitude smaller than the case of a neutral atom and an ion. A comparison of 
these two cases is shown in figure 2. As shown, in the range of interest, both are much 
smaller than the typical bonding energy of diatomic molecules-a few electron volts. 

2.3. Resonance energy due to tunnelling 

As shown in figure l(b), at a shorter proton-proton separation ( R  < 16 au or R < 8 A), 
the electron in the Is state in the vicinity of one proton has an appreciable probabiiity 
to tunnel to the Is state in the vicinity of another proton. The tunnelling matrix element 
can be evaluated using perturbation theory similar to those of Oppenheimer [18] and 
Bardeen 1121. A schematic is shown in figure 3. By defining a pair of one-centre poten- 
tials, UL and U,, we define the right-hand-side states and the left-hand-side states. 
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Because the potential U, is different from the potential of a free proton, U,,, the 
wavefunction qrL and the energy level Eo different from the 1s state of a free hydrogen 
atom. (The same is true for UR and VR.) We will come back to the effect of such a 
distortion later in this section. 

In the following, we present a treatment of the hydrogen molecular ion problem 
using the time-dependent Schrodinger equation: 

iaY(r, r)/Jr = (-$Vz + v)Y(r, r) (2.5) 

where U is the potential curve for the hydrogen molecular ion, as shown in figure 3(a). 
Similarly, for the left-hand-side and right-hand-side problems, we also look for solutions 
of corresponding time-dependent Schrodinger equations: 

iaYL(r,r)/ar = (-tV2 + UL)YL(r,r) 

imR(r, r)/at = ( - l V 2  + UR)YR(r, t ) .  

YL@, 0 = vIL(r) exp(-iEor) 

We denote the ground-state solutionsof equations (2.6) and (2.7) as 

YVR(r,1) = ~R(r)exp(-iEor). 

Because of time-reversal symmetry, the functions vL(r) and vR(r) can always be made 
real. Also, since the ground-state wavefunction does not have a node, we can always 
make the values of wavefunctions everywhere positive. Now, we look for solutions of 
equation (25) that are linear combinations of thesolutions of equations (2.6) and (2.7). 
In other words, we make the following ansarz: 

Y(r, I) = uL(r)vL(r) exp(-iEor) + aR(t)vR(r) exp(-iE,t). (2.10) 

U =  UL + UR (2.11) 

U,UR = 0 (2.12) 

Substitute equation (2.10) into equation (2.5). using the relations 

time-dependent perturbation theory gives the following equations: 

LiL(f) = iMu,(r) (2.13) 

&(I) = iMaL(l). (2.14) 

The transmission matrix element M can be expressed as the Bardeen integral 

(2.15) 

which is evaluated on the separation surface, i.e. the median plane (see figure 3). The 
details of the derivation are shown in the appendix. We use the convention that the 
gradient V along the z direction means +a/&. The behaviour of the wavefunctions 
reveals immediately that the matrix element is real and neguriue. 

A specific solution of equation (2.5) now depends on the initial condition. If at f = 0 
the electron is in the left-hand-side state, the solution is 

(2.16) 

This solution describes a back-and-forth migration of the electron between the two 

Yl(r, r) = [cos(Mt)W,(r) + isin(Mt)W,(r)] exp(-iEof). 
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Figure 3. Perturbation treatment of the hydrogen 
molecular ion. (a) The exact potential curve and 
the exact energy levels of the problem. (b)  Full 
curve, the left-hand-side potential for a per- 
turbation treatment; broken curve, the potential 
forafree hydrogenatom.(c)Fullcurve. theright- 
hand-side potential for a perturbation treatment; 
broken curve. the potentjal for a free hydrogen 
atom.Distanceisinatomicunits(1 au = 0.539A) 
and energy is also in atomic units or hartrees 
(1 au = 27.21 eV). 
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Figure 4. ( a )  The exact wavefunctions of the 
hydrogen molecular ion. Two lowest states are 
shown. The two exact solutionscan be considered 
as symmetric and antisymmetric linear com- 
binationsofthe solutionsoftheleft-hand-side and 
right-hand-side problems, (b) and (c).  defined by 
potential curves in (b) and (c). 

protons. At t = 0, the electron is revolving about the left-hand-side proton with a 
frequency f = ]EoJ/h.  Then, the electron starts migrating to the right-hand side. At t = 
n / l M I ,  the electron has migrated entirely to the right-hand side; and at t = 2./1 MI, the 
electron comes back to the left-hand side, etc. In other words, the electron migrates 
back and forth between the two protonswith a frequency v = I Ml/h .  Similarly, we have 
another solution: 

(2.17) Y2(r, t) = [cos(Mt)tpR(r) + i sin(Mt)qL(r)] exp(-iEot) 

which starts with a right-hand side state at t = 0. 
The linear combinations of the solutions, equations (2.16) and (2.17), are also good 

solutions of the time-dependent Schrodinger equation, equation (2.5). For example, 
there is a state symmetric with respect to space: 

v&, t) = yl + YZ = [tpdr) + tp~(r)l exp[-i(& + W t I  (2.18) 

as well as an antisymmetric state: 

Y&, 0 = - YZ = [qdr) - qR(r)l exp[-i(& - Wtl. (2.19) 

For brevity, the normalization constant is omitted. Obviously, these solutions are 
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stationary sfutes of equation (2.5) with energyeigenvalues Eo + Mand Eo - M, respect- 
ively. Because both & and M are negative, the symmetric state has a lower energy, 
which means an attractive force. 

The above discussion is but another formulation of the concept of resonance intro- 
duced by Heisenberg [13] for treating many-body problems in quantum mechanics. 
Heisenberg illustrated this concept with a classical mechanical model [13]: two similar 
pendulumsconnected by a weak spring. Accordingly, the meaning of equation (2.16) is 
as follows. A t  r < 0, the right-hand-side pendulum is held still, and the left-hand-side 
pendulum is set to oscillate with a frequency IE,l/h. At f = 0, the right-hand-side 
pendulum is released, Because of the coupling through the weak spring, the left-hand- 
side pendulum gradually ceases to oscillate, transferring its momentum to the right- 
hand-side pendulum. which now begins itsoscillation. At f = .AMI, the right-hand-side 
pendulum reaches the maximum amplitude, and the left-hand-side pendulum stops. 
Then, the process reverses. This mechanical system has two normal modes, with the 
two pendulums oscillating in the opposite directions or in the same direction, with 
frequencies ]Eo + Ml/h and IEo - Ml/h, respectively. These two normal modes cor- 
respond to the symmetric and antisymmetric states of the hydrogen molecular ion, 
respectively. as shown in figure 4. The two curves in figure 4(a) are the exact solutions 
ofthetwolow-energysolutionsofthe H: problem [ll].Toagoodapproximation, these 
solutions can be represented by the symmetric and antisymmetric superpositions of the 
distorted hydrogen wavefunctions. asshown in figures4(b) and (c). These wavefunctions 
are defined by the left-hand-side and right-hand-side potentials (figures 3(b) and (c)). 

In the following, we show that by expressing the tunnelling matrix element, and 
consequently Heisenberg's resonance energy, as a Bardeen integral [12], with the 
distortion of the hydrogen wavefunction considered [19], an exceedingly accurate ana- 
lyticexpression for the exact potential of the hydrogen molecular ion is obtained. 

Before we proceed to make an explicit evaluation of the Bardeen integral. we make 
a briefdiscussion about the effect ofthedistortionpotentials. e.g. AU = U ,  - U,,. The 
value of AU at the centre of the left-hand-side proton results in an increase of total 
energydue to the repulsive force between the protons, which isexactlycancelled by the 
attractive force between the right-hand-side proton and the electron in its undistorted 
state. The gradient of AUin the z direction inducesa shift of the centre of the electron 
wavefunction, which is the origin of the van der Waals force, as we have discussed above 
[8]. For relatively large distances, to a good approximation, equation (2.3) should still 
be accurate. The distortion potential also increases the absolute value of wavefunction 
on the median plane, with respect to the wavefunctions of the free hydrogen atoms 
which makes the tunnelling matrixelement. equation (2.16), larger than what would be 
expected from the wavefunction of a free hydrogen atom [19]. 

The effect of distortion as well as the evaluation of the integral (2.16) has been 
discussed by Holstein regarding the charge-exchange interaction between ions and 
parent atoms [19]. Holstein [19] showed that the net effect of the distortion on the 
wavefunctionat theseparationsurfaceisaconstant multiplier,g = 2 exp(-1/2) = 1.213. 
Holstein's integral, which represents the energy splitting between the symmetric state 
and the antisymmetric state, has the value [19] 

(2.20) 

Holstein's integral is exactly twice the minus value of Bardeen's tunnelling matrix 
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Table 1. Energy eigenvalues of the hydrogen molecular ion: a comparison between the 
accurate values tabulated in [20] and the analytic expression (2.24). Energy in rydbergs 
(IRyd=O.SHartree= 13.6eV). 

-WJJ (Ryd) 
R 
(au) [20] (2.24) Difference (201 (2.24) Difference 

6.0 1.35726 1.35869 0.00143 
6.5 1.32412 1.32459 O.OW47 
7.0 1.29690 1.29698 0.00008 
7.5 1.27426 1.27419 -0.00007 
8.0 1.25514 1.25505 -0.00009 
8.5 1.23878 1,23870 -0.00008 
9.0 1.22461 1,22454 -0.00007 

1.31462 1.31492 0.00030 
1.29581 1,29583 O.OWM 
1.27826 1.27820 -0.00006 
1.26206 1.26198 -0.00008 
1.24721 1.24715 -0.00006 
1.23365 1.23361 -0.00004 
1.22131 1,22127 -0.00004 

element [12] with the distortion included, i.e. equation (2.15). Therefore, we obtain the 
value of the integral in equation (2.15): 

M = -(2/ e)R exp(-R). (2.21) 

As we have shown, the resonance energy of Heisenberg [13] and Pauling [14] is exactly 
equal to this tunnelling matrix element [12]. The total coupling energy is the sum of the 
van der Waals energy [SI and the resonance energy [13]. For the lo, state, it is 

AE(lo,) = -$R-4 - (2/e)Rexp(-R) (2.22) 

andforthe 1o.state 

AE(lo,) = - % R - 4  + (2/e)Rexp(-R). (2.23) 

Table 1 shows a comparison between equations (2.22)-(2.23) and the exact solution 
of the H: problem. To make a direct comparison to the tabulated results of the exact 
solution [20] published by Bates et ai, we noticed that in the numbers of their tables, the 
energy reference is the vacuum, the Coulomb repulsion energy of the two protons is not 
included, and rydbergs (1 Ryd = 0.5 Hartree = 13.6 eV) is used as energy unit [20]. In 
this form, equations (2.22)-(2.23) becomes? 

(2.24) 

As shown in table 1, in the range R > 6 au, or R > 3 A, the agreement is exceedingly 
good. Itshouldbeemphasizedthatequation(2.24)is basedon pure theoretical reasoning 
with no adjustable parameters. Therefore, the interpretation of the resonance energy 
in terms of tunnelling is illustrated quantitatively in the case of the hydrogen molecular 
ion. 

In the paper of Bates eta1 [20], the exact numerical results are listed up to R = 9 au. 
Because the approximate solution (2.24) is exceedingly accurate in the entire range of 
R = 6 9  A, it is expected to be equally accurate for R > 9 au. In figure 2, a comparison 
of the van der Waals energy and the resonance energy in the large-distance (R > 10 au) 
regime is shown. At R > 16 au, the van der Waals force dominates. As R < 16 au, the 

E, = -1 - 2/R - %R-' i (4/e)Rexp(-R) (RYd). 

i Equations (2.22) through Lo (2.24) might have been discovered many years ago. Being unsuccessful in 
finding them in any literature, the author would appreciate any information about a proper reference. 
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Figure 5. Comparison of the exact solution of 
the hydrogen molecular ion problem (full curves) 
with the approximate equations in the attractive- 
force regime (broken curves) after equation 
(2.24). A1 short distances, the proton-proton 
repulsion becomes important. which raul ts in the 
discrepancy between the exact solution and the 
asymptotic expression, equation (2.24). The van 
der Waals componenl, equation (2.3). is also 

0.0 
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resonance energy becomes important. It is interesting to note that even for the lo, 
state, there is a shallow minimum at about R = 14 au, or 7 A. The absolute value. 
4.1 x au, or 1.1 meV, ismuch smaller than the typical valuesof resonance energy, 
a few eV. At R = 10 au, the resonance energy is already much larger than the van der 
Waals energy. 

A comparison of the approximate equation (2.24) with the exact potential curves of 
HS in thc short-distance regime is shown in figure 5 .  Notice that the vertical scale in 
figure 5 is about 1000 times larger than that in figure 2. The van der Waals energy is 
almost imperceptible on this scale. The resonance energy, equation (2.21), describes 
the asymptotic behaviour of the exact potential well down to about 4 au. At even shorter 
distances, e.g. R < 4 au, corexore repulsion becomes important. 

2.4.  Corecore repulsion 

As shown in figure 1, as the proton-proton separation becomeseven smaller, the picture 
of resonance becomesobscured. and the proton-proton repulsion is no longer screened 
by the electron. Slater [ 111 has shown that the Morse curve can fit very well to the exact 
potential curve. The Morse curve can be considered as a sum of an exponential attactive 
force and an exponential repulsive force, w,hich is intuitively understandable and ana- 
lytically simple. 

2.5. An order-of-magnitude comparison 

To assess the relative importance of the van der Waals and the resonance components 
occurring in m and AFM, it i s  instructive to compare the quantities occurring in real 
experiments versus those quantities in the exactly solvable Ht problem. 

2.5.1. The range of separation. The experimentally determined tipsample separation 
is 1-4 A before mechanical contact [3,5]. In the case of H? ,  the proton-proton sep- 
aration at mechanical contact, i.e. the point with zero net force [ I l l ,  is 2 au or 1.06 A. 
Therefore, the range of normal mu operation corresponds to a nucleus-nucleus sep- 
aration of 2-5 A, or 4-10 au in the case of the hydrogen molecular ion. This is exactly 
the range within which the resonance interaction [13] dominates. and the approximate 
expression (2.24) provides an accurate description of the total atomic force. In this 
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Table 2. A comparison of the resonance energy with the van der Waals energies for the 
hydrogen molecular ion (H t H') and neutral hydrogen molecule (H t H). The actual 
situation io sm and AFM. in terms of van der Waals force. is similar to that of two neutral 
atoms. The ratio of the van der Waals energy with respect to the resonance energy is also 
shown. For the case of practical interest, i.e. the neutral atoms, the van der Waals energy is 
less than 2% of the total bonding energy. 

van der Waals (H:) van der Waals (HJ 
R Resonance 
( a 4  (au) ( 4  Ratio(%) (au) Ratio (96) 

5.0 0.024788 0.003600 14.5 0.000416 1.7 
6.0 0.010943 0.001736 15.9 0.000139 1.3 
7.0 0.004696 0.000937 20.0 0.000055 1.2 
8.0 0.001975 0.000549 27.8 0,000025 1.3 
9.0 0.000817 0.000343 42.0 0.000012 1.5 

range, both van der Waals force and the repulsive force are much smaller than the 
resonance force, as shown in table 2. In other words, under normal STM operation 
conditions, over a distance range of about 3 A, resonance energy is almostsoiely respon- 
sible for the atomic force, and the distance dependence of the force should be approxi- 
mately exponential. 

2.5.2. The sensitiuity O ~ A F M .  In the best AFM experiments [2], the force sensitivity is 
about 0.01 nN. In the range of 4-10 au, the resonance force in the hydrogen molecule 
ion is 4 to 0.01 nN. Therefore, the resonance force (attractive atomic force) of a single 
chemical bond, extended over a distance of 3 A, can be detected. On the other hand, 
the van der Waals force of a pair of neutral atoms, when it is distinguishable from the 
total force, is always smaller than 0.01 nN, which is beyond the detection limit of the 
existing AFM. On the other hand, the repulsiue force, when it is separable from the 
resonance force, can be as large as some tens of nanonewtons, which is always within 
the detection limit of AFM. 

2.6. Comparison with preuious work 

Perturbation treatments for the atomic force have been discussed by Holstein 1191 in 
conjunction with charge-exchange interactions as well as Flores eta1 1211 in conjunction 
with STM. Holstein's theory 1191 deals with the energy splitting between the bonding and 
antibonding state, not the actual bonding energy, i.e. the lowering of the ground-state 
energy of two systems relative to its energy at infinite separation [19]. Holstein derived 
an accurate asymptotic equation for the value of energy splitting between the lowest 
bonding state (lug) and the lowest antibonding state (1uJ of the hydrogen molecular 
ion, with the effect of distortion included 1191. Here, we show that the total binding 
energy can be accurately represented as a sum of the van del Waals energy and the 
resonance energy, and the latter exactly equals one-half of Holstein's value of energy 
splitting. Floreserafconsidered theproblem OfSTM usingamuffin-tin model andreached 
a similar equation [21] for the interaction, without considering the distortion due to 
another party. They interpret their result as a relation between the tunnelling current 
and the repulsive atomic force. In the following section, we show that the equality 
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between Bardeen’s tunnelling matrix element and Heisenberg’s resonance energy leads 
to an explicit equation between the tunnelling conductance and the attracrioe atomic 
force, which can be verified by direct and independent measurements. 

3. Attractive atomic force on metal surfaces 

The goal of this section is to establish a general equation between the attractive atomic 
force and the tunnelling conductance on metal surfaces, as a result of the equality 
between Bardeen’s tunnelling matrix element and Heisenberg’s resonance energy. This 
equation is valid only in the range of tipsample distances where the exchange force 
dominates. Such a range of tip-sample distances coincides with the normal operating 
conditions of STM. 

3.1.  Van der Waals force 

Thevander Waalsforce between twosolid bodiesisawellstudiedproblem [SI. Because 
the van der Waals force is a valid description of the interatomic forces between two 
pieces of solid with a distance much larger than the diameter of a typical atom, a 
macroscopic approach is often used [SI. The results show that the force between a pair 
of planes with separation l is proportional to a result as if the force is additive with 
each pair of atoms exhibiting a van der Waals force, according to the F6 law. This 
procedure gives the right order of magnitude [9]. As we have shown for the case of 
H:, although at larger distances, e.g. R > 16 au or R > 8 .&, the van der Waals force 
dominates, at distances relevant to sTM and AFM experiments. e.g. R = 3-6 A, the van 
der Waals force is much smaller than the exchange force. However, the polar- 
ization does change the amplitude of the electron wavefunction at the separation 
surface. It results in an increase of the attractive force, similar to Holstein’s factor g = 
2 exp( - 1/2) in the case of the hydrogen molecular ion [19]. 

3.2. Resonance coupling on ?netal surfaces 

Although the van der Waals force works almost identically for metals and insulators, 
the exchange force, or resonance force, behaves differently. For metals, the electronic 
states near the Fermi level are half-filled. At the distances of normal STM operation, 
these unpaired states are responsible for the exchange force or resonance energy, which 
makes a net lowering of the total energy of the entire system. In this case, the one- 
electron picture of the resonance energy is valid, and the tunnelling matrix element 
provides an appropriate description of the atomic force. On the other hand, for 
insulators, the exchange coupling results in bonding states as well as antibonding states 
across the boundary. The net effect of resonance on the total energy is zero. Therefore, 
only the van der Waals force and the repulsive force are effective. 

To make a quantitative treatment, we define a system including a tip and a sample, 
as shown in figure 6. In the Hartree-Fock formalism, the one-electron Schriidinger 
equation is identical to equation (2.9, with the potential surface shown in figure 6(6). 
Similar to  the treatment of the hydrogen molecular ion, a separation surface is drawn 
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SAMPLE TIP 

... 

I 
I 
I SURFACE 
I Figure 6. Schematics of the perturbation theory 

of atomic force between a sample and a tip. (a) 
The geometq ofthe system. Aseparation surface 
is drawn between the tip and the sample. (b )  The 
potential of the coupled system. (c )  The potential 
surface of the unperturbed Hamiltonian of the 
sample, U;, which may be different from the 
potential surface of the free sample, Clso. (d )  The 
potential surface ofthe unperturbed Hamiltonian 
of the tip, U,, which may be different from the 
potential surface of the free tip, Um. The effect 
of the difference between the 'free' tip (sample) 
potentialand the'distortedtip(sample) potential 
can be evaluated using the perturbation method; 
see [I91 and [22]. 

corresponding Schrodinger equations define the stationary states of the sample and the 
tip, v and x: 

(-tV + U s ) * = E Q  (3.1) 

Considering first a single state in the tip and a single state in the sample with the same 
energy eigenvalue E@ In the absence of a magnetic field, the Hamiltonian exhibits time- 
reversal symmetry. Real wavefunctions can be chosen. The derivation of the tunnelling 
matrix element and the resonance energy is almost identical to the case of H: . If both 
electrodes are metals, near the Fermi level, every state in the sample side should have 
astate in the tip side which has the same energy eigenvalue. Therefore, resonancealways 
exists even if the two sides are not identical. (In the case of simple molecules, the concept 
of single-electron resonance does not work if the atoms are not similar [14].) The 
resonance results in a pair of combined states, 2-'"(Y, + x) and Tti2(v - x). as well as 
a splitting of the energy level to E + M and E - M, where M is Bardeen's integral in 
terms of distorted wavefunctions [12]: 

(3.3) 

For the case of the hydrogen molecular ion, the net effect of resonance is a lowering 
of the total energy. In the case of two pieces of solids, the net effect on the total energy 
of the coupled system depends on the position of the energy level of unperturbed states. 
If the energy level of a pair of unperturbed states is much lower than the Fermi level, 
then both the bonding state and the antibonding state resulting from the exchange 
interaction are occupied. Therefore, the net energy change of the entire system due to 
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the exchange interaction between this pair of unperturbed states is zero. For insulators, 
this is always the case. As a result, for insulators, the van der Waals force and the 
repulsive force are the major contributors to the observed atomic force. On the other 
hand, the electronic states on conductor surfaces consist of unpaired electrons. After 
resonance splitting, only the lower resonance states are occupied. Therefore, a net 
lowering of the total energy, i.e. a net attractive force due to  the exchange coupling, 
occur?.. 

3.3. A measurable consequence 
In the following, we will derive a relation between the measured tunnelling conductance 
and the measured atomic force. The major uncertainty is the exact geometry and 
chemical nature of the end of the tip. Experimentally, the uncertainty is often observed. 
As we show below, the geometrical arrangement of the atoms near the apex of the tip 
has a large influence on the magnitude of the force. Therefore, the relation we establish 
is of order-of-magnitude and functional-dependence nature. 

To account for the attractive force in the normal range Of STM operation, we consider 
surface states on the tip near the Fermi level. The states above the Fermi level are 
normally unoccupied, and therefore do not contribute to the force. For states much 
lower than the Fermi level, the decay length is much shorter, and the overlap is much 
weaker. For a single state, the attractive force is 

F =  - a M / a z .  (3.4) 
For metals, the variation of the tunnelling matrix element M and the density of states 

p over the valence band is small in comparison with their absolute values. A simple 
relation between the force and the tunnelling current can be established. Assuming that 
the width of the valence band e is the same for the tip and the sample, the density of 
states is p = & - I  for both. The tunnelling conductance is then [22] 

where R ,  = h/e*  = 25812 C2 isvan Klitzing'sconstant [23]. Experimentsand theoretical 
studies [24] have shown that. over the entire range of STM operation, the tunnelling 
conductance varies exponentially with tipsample distance, G CC exp( - ~ K z ) ,  where K = 
(2m,q)"*/h is the decay constant ofthe surface wavefunction, and is the workfunction 
of the material. Combining equations (3 .4)  and (3.5).  we obtain 

G = ( ~ ~ ) * R , ' E - * / M I *  (3.5) 

F =  - ( ~ J I ) - ' K B ( G R K ) ' ~ * .  ( 3 4  
To establish a quantitative relation between Fand G for the entire tip and the entire 

sample, we have to consider all the states in the tip and the sample. A rigorous treatment 
iscomplicated. The following treatment is based on the approximate additivityof atomic 
force and tunnelling conductance with respect to the atoms of the tip. In other words, 
the force between the entire tip and the sample can be approximated as the sum of the 
force between the individual atoms in the tip and the entire sample; so can tunnelling 
conductivity. Becausethe tipismadeoftransitionmetals,forexample, W,Pt andIr, the 
tight-bonding approximation, and consequently additivity, is a reasonable assumption. 
Under this approximation, the total force is 

F =  - ( h ) - ' K & E  (G,R,)I/* (3.7) 

where the sum is over all the atoms in the tip. If the atomic resolution of the force is not 
of concern, the sum can be approximated as an integral over the volume of the tip. 
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(a )  (b) 

Figure I .  The effect of tip geometry: (a )  the end of a typical etched metal tip; (b )  the end of 
a typical cleaved or cut-out tip. 

Denote the distance from the plane of the topmost nuclei of the sample to the apex 
nucleus of the tip as zo. For an etched tip, the shape of the end can be represented as a 
paraboloid (figure 7(a)). The cross section at z is S(z)  = 2zR(z - zo), where R is the 
minimum radius of curvature. Denote the tunnelling conductance per unit volume of 
the tip to the sample as Goexp( - 2 ~ 2 ) ;  the total tunnelling conductance is then 

DI 

G = Go 1 exp( -2~z)S(z) dz = G 0 ( n R / 2 ~ z )  exp( - 2 ~ 2 ~ )  (3.8) 
10 

whereas the total force is 

F =  - ( ~ Z ) - ' K E " ~ R K ) ' ' ~  exp(-KZ)S(z) dZ I' zn 
= - ( 2 ~ )  K E ( G " R ~ ) ~ ' ~  ( 2 n R / ~ ~ )  exp( - K Z ~ )  = -@/?C)KE(GR K )  

(3.9) 
For tips cut mechanically (e.g. with a surgical blade) or cleaved from a brittle material, 
which exhibit a conical end (figure 7(6)), S(z)  = (z  - 2")'. Similar calculation gives 

F - ( ~ / ? c ) K E ( C R K ) ' " .  (3.10) 

By defining a shape factor f ,  which i s f=  2 / n  = 0.637 for tips with a paraboloidal end 
andf= 4 / n  = 1.27fortipswithaconicalend,equations(3.7)and (3.8)canbecombined 
to 

F =  - f  K E ( C R ~ )  l @ .  (3.11) 

The actual shape of the tip end might be in between. Thus, in general, the shape factor 
should beadimensionlessnumber oftheorderof 1. Acomparisonwith theexperiments, 
using the calculated width of valence bands [25].  is shown in figure 8. Line (a) in 
figure 8 represents equation (3.6), with K = 1.0 A-', and E = 8 eV. Line (b) represents 
equation (3.11), with f = 0.64. Line (c) represents equation (3.11), with f = 1.2. The 
data points are from [3].  As shown, the square-root relation as well as the order of 
magnitude of the absolute values from the theory fit well with experimental data. 

3.4. Repulsive force 

When the tip is brought even closer to the sample, the repulsive force appears as a result 
of core-coreinteraction. Adecline of the attractive force is found, asshown by the data 
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ESTIM4TEO DlSTaNCE I& 
5 6  

Figure 8. (a )  The general relation between the 
atomic force and tunnelling conductance, which 
is a m r a t e  in the attractive-force regime at larger 
sampletip ditances, e.g. z > 3 A. Parameters 
used: K =l.OA~',~=8eV.Twopointsofinter. 
est, P and Q, are marked schematically. Below 
the point Q, the repulsive force dominates, and 
the linear relation beween the atomic force and 
the square root of tunnelling conductance is no 
longer correct. Point P is fhe point of mechanical 
contaci, typicallyz < 2.5 A.  (b )  Equation (3.11). 
with f=0.64. (c )  Equation (3.11). with f- 1.2. 
Experimentaldata pointsare taken from twodafa 
sets in [I]. The difference in absolute value can be 
attributed to different tip geometry As seen. the 
square-root relation as well as the order of mag- 
nitudes of the absolute values from the theory fit 
well with experimental data, 

pointsinfigure8. In the following, weargue that,asanaturalextensionoftheexponential 
law of attractive force, the Morse curve is a natural choice based on the following 
heuristic argument. The energy levels of the core electrons are much deeper (e.g. 10 to 
2OeV from the Fermi level). and they have no effect on tunnelling conductance. 
However, a repulsive force isgenerated, which also exhibits 3n exponential dependence 
on distance, with a decay constant related to the energy level of the core, with a decay 
constant of roughly 2 ~ .  The sum of the two terms is the well known Morse curve [ll] 

F =  - 2 ~ U , { e x p [ - ~ ( r - z , ) ] - e x p [  -ZK(Z-Z.)]} (3.12) 

where U, is the binding energy and z, is the equilibrium distance. One of the advantages 
of using the Morse curve to represent interatomic forces is that, for periodic surfaces, 
the sum of the Morse force has a simple analytic form [ 6 ] .  By assuming a Morse force 
and a deformable tip, we have reproduced the measured data of the apparent barrier 
height with reasonable accuracy [SI. 

4. Conclusions 

Based on time-dependent perturbation theory, a fundamental equality between 
Bardeen's tunnelling matrix element and Heisenberg's resonance energy is established. 
Applying it to the hydrogen molecular ion, an exceedingly accurate approximate 
expression for the potential curve in the attractive-force regime is derived. Applying 
this fundamental relation to STM and AFM. for metals. in the attractive-force regime, an 
explicit equation between the attractive force and the tunnelling conductance is derived. 
The equation is found to  be in quantitative agreement with experimental results. 
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Appendix. Transition matrix elements 

In this appendix. we present a derivation of the transition matrix element, equation 
(ZS), which appearsin equations (2.13) and (2.14). 

A schematic is shown in figure 3. Assume that, at f < 0, U, is turned off. The 
Schrodinger equation gives the stationary states for the potential U,. Because we are 
only interested in the evolution of one state, to simplify the notation, we assume that 
this state is the ground state, qpL: 

( T +  ~ L ) W L  = EoWr (AI) 
where T = - 4V* is the kinetic energy. At t > 0, the right-hand-side potential is turned 
on. The state l/lL starts to evolve according to the Schrodinger equation 

i JY/& = (T  + U, + U,)". (A2) 
Expanding Y in terms of the eigenfunctionsxn of the right-hand-side potential, defined 
by the following stationary-state Schrodinger equation, 

(T  + U R ) X .  = EnxO ('43) 
the general solution of equation (A2) can be written as: 

where the functions a.(t) are to be determined. 
Since both equations (Al)  and (A3) are real, so simplify the discussion, we require 

that all the wavefunctions are real. To describe the time evolution of a state that is y, 
at f = 0, we make the ansatz 

a.(d = (xnq ~ d e x p I - i ( E 0  -E,&] + ~ ( 0  
with ~ ~ ( 0 )  = 0. Then 

Y = yo exp( -So[) + 2 c , ( r )~ ,  exp(-iE,f). 

Substitute equation (A6) into (AZ); we obtain exact equations for c,(f): 

For small r ,  the second term is small. Consider now the first term, i.e. first-order time- 
dependent perturbation. Except for the term n = 0, the exponential factor makes such 
aswift oscillation that it can be neglected. Denoting the wavefunction xoas W,, equation 
(A7) becomes 

Since U, is non-vanishing only in the right half of the space, the integral in equation 
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(A8). i.e. the transmission matrix element M ,  is evaluated only in the right half of the 
space. 

In the following, we convert the volume integral to a surface integral using the 
Schrodinger equations (AI) and (A3). Using equation (A3), and noticing that Eo is a 
constant. 

By using equation (Al). and noticing that in the right half of the space, U, = 0, we 
obtain 

M =  (r/l,TY,-Y,TYt,)dV=-Zf ('!"v2$'L-1/1Lv2~)R)dV. 

Finally, using the Green theorem, the volume integral in equation (A10) is converted 
into a surface integral, i.e. the Bardeen integral [12]: 

(A101 
I 

R 

= z (VRvVIL - vtiv$'R) ' (Al l )  

where the integral is carried out on the separation surface, which is the mid-plane in the 
hydrogen molecular ion problem. 

An observation into the behaviour of the wavefunctions reveals immediately that 
the value of this matrix element is negative. In fact, qL varies with L as exp( -2); the L 
derivativeof it is negative. Thederivativein the second termispositive, and thenegative 
sign makes its value equal to that of the first term. 

By starting with a right-hand-side wavefunction, we reach the same transition matrix 
element (without changing the sign), because when the Green theorem isapplied to the 
left-hand side, the direction of the norm is reversed. 

'I 
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